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A efficient PIC technique has been implemented to study the development of electrical dis-
charges during long periods of time. Special motivation is provided by electrical pulsations
that develop in very short times but whose repetition period is much longer. The method
exploits the existence of different time scales in the electrical discharge to implement a
long time-step particle pushing technique both at particle and at mesh levels. The develop-
ment of a train of hundreds of Trichel pulses, which is a prohibitively long computation
with a conventional PIC, has been used to test the validity of the method.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Numerical simulation of electrical discharges in gases constitutes a complex task, since the non-linear interplay among
ionization, charge density and electric field gives rise to the generation of sharp gradients and propagating shock waves.
These facts have motivated the development of different numerical techniques, many of them specially designed to mini-
mize numerical diffusion [1–4]. The pioneer works of Davies et al. [5] used the method of characteristics, which can be easily
adapted to the problem of ionization in gases. However, this method required, at least in its original implementation, the
interpolation from mesh nodes at each temporal step of the simulation, and did not include any special refinement in order
to reduce numerical diffusion. Particularly successful results have been obtained through the use of flux-corrected-transport
algorithms with finite differences (FD-FCT). This method is an Eulerian technique that has been optimized to achieve very
low numerical diffusion in problems with fronts or shock-like discontinuities [6]. In fact, the Phoenical-FCT method is
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capable of maintaining a steep gradient, without significant distortion, for several thousands of temporal steps (see Fig. 6 in
[6]), thus constituting an invaluable tool in the research of corona discharges. Two-dimensional simulation of gaseous dis-
charges have also been also performed using this technique [7,8] and, more recently, the scheme has been successfully ex-
tended to two-dimensional and three dimensional geometries by combining FCT with finite element methods [9]. Many
other numerical schemes have been applied to the area of gaseous discharges: specially adapted finite-element techniques
[10], finite difference Scharfetter–Gummel techniques [4] and, more recently, MUSCL and QUICKEST [11], as well as others
techniques [12]. According to the rich bibliography produced, all these methods have been fruitful in fundamental research
of transient phenomena in electrical discharges.

Particle-in-cell (PIC) techniques, in spite of being a usual tool in kinetic plasma simulations [13], have not been so widely
applied to the simulation of electrical discharges in gases, at least in the drift-diffusion approximation. A modular PIC ap-
proach that encompass both fluid and kinetic plasma behavior has been developed by Lapenta et al. [14], who were specially
motivated in obtaining the steady-state solutions of DC discharges by solving the time-dependent equations. In a previous
work, the authors have also implemented a fluid PIC technique to simulate transient electrical discharges [15]. The proposed
implementation included a special treatment of the source/sink terms of particle densities, which improved the precision of
the numerical simulation. The PIC technique was then compared with a standard FCT method, and the agreement between
both techniques turned out to be remarkable. This is a usual conclusion when comparing PIC with finite difference tech-
niques: for problems that are tractable by finite-difference methods, PIC and FCT give very similar results, but PIC always
has a higher computational cost. However, fluid PIC codes, such as FLIP (Fluid-Implicit-Particle) [16], show its potential in
specially difficult problems where finite difference methods are not appropriate. In particular, fluid PIC techniques becomes
very valuable in the simulation of quasi-stationary states, specially those with large density gradients perpendicular to the
flow velocity [17–19].

The goal of this work is to formulate an efficient fluid PIC method to study the development of electrical discharges during
long periods of time. PIC methods are particularly adequate for this task, owing to its very low numerical diffusion. The pro-
posed method exploits the existence of very different time scales to implement a long time-step pushing technique [20,21]
on computational particles and on virtual node-particles, in a way somewhat inspired in FLIP [16]. The result is a very fast
method, capable of simulating electrical pulsations (like Trichel pulses) that usually requires a huge number of computa-
tional steps. The proposed technique accelerates PIC calculation to the point of being faster than finite difference techniques.

The paper is organized as follows. In the first section, the basic concepts of the method are reviewed and discussed. In the
second section, the long time-step pushing technique is implemented at particle level, and then extended to the grid level in
the next section. Finally, in the last section, the problem of the development of a train of Trichel pulses is used to test validity
of the method, and a comparison with a conventional PIC method is done.

2. Fundamentals of the method

In the drift-diffusion approximation, the density of species in a one-dimensional electrical gas discharge is governed by a
set of continuity equations of the form [6]
@qi

@t
þ @

@x
ðqiðx; tÞViðx; tÞÞ ¼ Siðx; tÞ; i ¼ 1;2; � � � ; l; ð1Þ
where qi, Vi and Si represent the number density, the velocity and the source–sink term of the species i, respectively, and l is
the total number of species. Typically, this set of equations models the spatio-temporal evolution of an electrical discharge
that progresses along a narrow channel in x direction.

The conservation equations for the species densities are coupled to Poisson’s equation through the charge density,
r2/ ¼ � 1
e0

Xl

i¼1

qiqi: ð2Þ
where / is the electrical potential, e0 is the gas permittivity and qi is the electric charge of particles of the species i. Poisson’s
equation must be solved in three dimensions to account for the finite radial extent of the discharge channel [5,22].

As it is well known, PIC methods replace the continuous particle density qiðx; tÞ with a set of discrete computational par-
ticles or superparticles. Using the image of these computational particles as ‘‘clouds” of physical particles [23], it was show in
[15] (see also [24]) the convenience of considering each species density as the product of a density of fictitious carriers, Ni,
whose number is conserved, and a variable number of physical particles, li,
qiðx; tÞ ¼ Niðx; tÞliðx; tÞ: ð3Þ
With this approach, each equation in (1) splits into two independent equations
@Ni

@t
þ @

@x
ðNiViÞ ¼ 0; ð4Þ

dli

dt
¼ Si

Ni
; ð5Þ
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where d=dt represents the Lagrangian time derivative d=dt ¼ @=@t þ Vi@=@x. Some of the physical processes contributing to
the source–sink term Si can be directly proportional to the number density of the species i. Therefore, the term Si can be ex-
pressed as
Siðx; tÞ ¼ Siðx; tÞ þ Kiðx; tÞqiðx; tÞ; ð6Þ
where Ki is a proportionality constant and Si brings together all the terms that are non-linear in qi. The dependence of these
functions on x and t may be either explicit or implicit through other variables, like species densities or the electric field. Eq.
(5) can then be written as
dli

dt
¼ Siðx; tÞ

Niðx; tÞ
þ Kiðx; tÞliðx; tÞ: ð7Þ
The discretization of Eq. (1) or, equivalently (4,5), is made through the use of superparticles, whose interactions are evalu-
ated on a grid. In what follows, the magnitudes related to the grid nodes and computational particles will be designated with
indices g and p, respectively. In particular, the location of grid nodes will be designated as Xg , and the position of computa-
tional particles of the species i will be denoted by xp

i ðtÞ. These computational particles can be seen as the natural discretiza-
tion of the fictitious carriers, with density Ni, introduced in (3). Therefore, at the grid nodes, Ni will be approximated by the
density of computational particles, ng

i , which can be obtained as a weighted average on particle positions [25]
NiðXg ; tÞ ¼ ng
i ¼

1
DXg

X
p

Wg
CICðx

p
i Þ; ð8Þ
where Wg
CICðx

p
i Þ represents the weighting function (or assignment function) for the particle position xp

i and grid node g, and
DXg ¼ ðXgþ1 � Xg�1Þ=2 is taken as the cell width corresponding to the grid node Xg . For consistency, the weighting function
must satisfy the following normalization condition
X

g

Wg
CICðx

p
i Þ ¼ 1: ð9Þ
Different types of assignment functions can be used for the interpolation between grid nodes and particles [23]. Here, the
subscript CIC indicates that a cloud-in-cell interpolation scheme has been chosen.

Moreover, each computational particle has a certain number of associated physical particles, lp
i ðtÞ. The density of the spe-

cies i at Xg can then be approximated as
qiðXg ; tÞ ¼
1

DXg

X
p

lp
i ðtÞW

g
CICðx

p
i Þ: ð10Þ
Using this notation, the equations governing the temporal evolution of xp
i ðtÞ and lp

i ðtÞ can be written as
dxp
i

dt
¼ v iðxp

i ; tÞ ð11Þ

dlp
i

dt
¼ riðxp

i ; tÞ þ kiðxp
i ; tÞl

p
i ðtÞ; ð12Þ
where ri, v i and ki are the discretized versions of Si=Ni, Vi and Ki, respectively. At the grid nodes, the values of ri, v i and ki are
equal to the corresponding of Si=Ni, Vi and Ki, which are functions of the species densities and of the electric field. Elsewhere
they must be interpolated from their values at grid nodes using the weighting functions. Particularly, riðxp

i ; tÞ is obtained as
the interpolation of the ratio Si=Ni, and not as the ratio of the interpolated values of �Si and Ni, independently. Moreover, due
to the differentiated treatment of proportional and non-proportional source–sink terms, only Ki (and not Kiqi=Ni) is inter-
polated from the grid to the particles for source–sink terms that are proportional to the species density. In contrast, for
non-proportional source–sink terms, it is Si=Ni that must be interpolated to the computational particles. As it was shown
by Soria et al. [15], this differentiated treatment of proportional and non-proportional source–sink terms has as a result a
more precise numerical simulation.

Eqs. (11) and (12) constitute a set of ordinary differential equations which can be integrated in time using a finite differ-
ence method, like the Runge–Kutta method. The temporal step for this integration is limited by both accuracy and stability
considerations:

1. The displacement of each computational particle during one temporal step must be smaller than the grid spacing, in order
to integrate the particle trajectory with the resolution allowed by the grid.

2. The temporal step must be shorter than the characteristic times associated with the source–sink terms (ionization,
attachment, etc.).

3. The temporal step must be shorter than any other characteristic physical time, particularly, the charge relaxation time.

In most of circumstances, the main limitation to the temporal step comes from the first consideration applied to the fast-
est particles, that is, the electrons in the case of plasmas or electrical discharges. Various techniques have been proposed to
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mitigate this limitation. For example, subcycling reduces computational time by performing a smaller number of longer tem-
poral steps for ions than for electrons [13]. Other techniques have focused on integrating analytically the electron evolution
under certain approximations, and using the obtained expressions to advance particles over a larger temporal step [21,20].
For example, Smolsky [20] has simulated the motion of relativistic particles in electromagnetic fields using the analytical
solutions of the equations of motion in homogenous or quasi-homogenous electric and magnetic fields. Usually, these
semi-analytical techniques must evaluate lengthy expressions for each particle. Therefore, they will only be efficient if
the saving in the number of temporal steps compensates for their higher computational cost.

The method proposed in this paper is also a semi-analytical technique, and it is formulated for stationary electric fields.
Particle by particle integration is reduced to a minimum, and most of required operations are performed on virtual node-par-
ticles following a procedure inspired in FLIP algorithm [16]. However, in the present case, the evolution equations cannot be
fully solved using these virtual node-particles, since there are several types of particles interacting with the others through
the source–sink terms.

3. Implementation of the long time-step on superparticles

In this section, we address the problem of implementing the long time-step particle pushing technique at the par-
ticle level. Therefore, the Lagrangian Eqs. (11) and (12) will be integrated in time assuming a stationary, but inhomo-
geneous, electric field. Grid values of the electric field have been obtained by interpolating the electrical charge of
computational particles to the grid nodes using a CIC assignment scheme, and then integrating Poisson’s equation
numerically [23,13].

The equation governing the evolution of lp
i can be written as a function of particle coordinates or, more conveniently, in

terms of natural coordinates [16], cp
i ðtÞ,
dlp
i

dcp
i

¼ DXgþ1=2

v iðxp
i ; tÞ
½riðxp

i ; tÞ þ kiðxp
i ; tÞliðx

p
i ; tÞ�; ð13Þ
where cp
i is defined as
xp
i ¼ Xg þ cp

i DXgþ1=2; Xg 6 xp
i < Xgþ1; ð14Þ
with DXgþ1=2 ¼ Xgþ1 � Xg .
Integration of particle positions is accomplished by using an energy conserving algorithm [23], as momentum-conserving

algorithms are known to be unstable for this type of problems [15]. In the energy conserving algorithm, all computational
particles of the species i lying inside the interval Xg 6 xp

i < Xgþ1 have an identical velocity: the one corresponding to the elec-
tric field at the midpoint between grid nodes, vgþ1=2

i ¼ ViðEgþ1=2Þ, where Egþ1=2 ¼ EðXgþ1=2Þ and Xgþ1=2 ¼ ðXgþ1 þ XgÞ=2. This
particle velocity interpolation is equivalent to a nearest-grid-point (NGP) interpolation from a grid whose grid nodes are
located at the midpoints of the original grid.

On the contrary, source and sink terms are usually evaluated at the grid nodes, and then they are interpolated to the com-
putational particles. However, as indicated before, the physical processes contributing to the source and sink terms are of
different nature and, in particular, some of them are directly proportional to the particle density, with a constant of propor-
tionality that only depends on the particle velocity. For these last processes, a more accurate evaluation will result if it is
performed at the same location than the particle velocity, that is, at the midpoint between grid nodes. Therefore, functions
�riðxp

i Þ and kiðxp
i Þ are defined as
riðxp
i ; tÞ ¼Wg

CICðx
p
i Þr

g
i þWgþ1

CIC ðx
p
i Þr

gþ1
i ; ð15Þ

kiðxp
i ; tÞ ¼Wgþ1=2

NGP ðx
p
i Þk

gþ1=2
i ; ð16Þ
where kgþ1=2
i ¼ KiðEgþ1=2Þ and Wg

CICðx
p
i Þ and Wgþ1=2

NGP ðx
p
i Þ denote the CIC and NGP weighting functions, respectively, [23]. The

function rg
i is defined as
rg
i ¼

SiðXgÞ
NiðXgÞ

: ð17Þ
In terms of natural coordinates, CIC weighting reduces to
Wgþ1
CIC ðx

p
i Þ ¼ cp

i ; ð18Þ
Wg

CICðx
p
i Þ ¼ 1� cp

i ; ð19Þ
and NGP weithing to
Wgþ1=2
NGP ðx

p
i Þ ¼

1; if Xg 6 xp
i < Xgþ1;

0; in any other case:

�
ð20Þ
Therefore, Eq. (13) becomes
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dlp
i

dcp
i

¼ Dtgþ1=2
i rgþ1

i cp
i þ rg

i ð1� cp
i Þ þ lp

i kgþ1=2
i

h i
; ð21Þ
where
Dtgþ1=2
i ¼ DXgþ1=2

vgþ1=2
i

: ð22Þ
Eq. (21) can be integrated from c0 to cp
i , yielding
lp
i ðc

p
i Þ ¼ lp

i ðc0Þ þ Dg
i þ Fg

i c0

� �
exp½Cg

i ðc
p
i � c0Þ� � Dg

i þ Fg
i c

p
i

� �
; ð23Þ
where
Ag
i ¼ rg

i Dtgþ1=2; ð24Þ
Bg

i ¼ ðr
gþ1
i � rg

i ÞDtgþ1=2; ð25Þ
Cg

i ¼ kgþ1=2
i Dtgþ1=2; ð26Þ

Dg
i ¼

1
Cg

i

Ag
i þ

Bg
i

Cg
i

� �
; ð27Þ

Fg
i ¼

Bg
i

Cg
i

: ð28Þ
The application of Eq. (23) to a long time-step particle pushing, along which the particle may cross several cells, requires
that both ki and �ri be constants. Since ki and �ri are implicit functions of time through their dependence on electric field,
the temporal variation of the electric field during the long time-step should be negligible. Therefore, the long time-step
must be necessarily shorter that the charge relaxation time. However, the first two limitations of the temporal step cited
in Section 2 have been eliminated, since both xp

i and lp
i can be integrated semi-analytically. If other characteristic phys-

ical times, in addition to the charge relaxation time, were present, the long time-step will be limited by the shortest
among them.

The interaction between species during the long time-step imposes additional restrictions to the use of Eq. (23), since ki

and, particularly, �ri, may depend on the densities of other species different from i. Fortunately, in gas discharges and plasmas
in general, the most important processes are caused by the interaction of electrons with the background gas, whose density
may be taken as a constant (see, for example, the Appendix in [26]). These processes give rise to the generation of new elec-
trons and also to the rest of species. Thus, the source term of a species i, different from electrons, can frequently be written as
Siðx; tÞ ¼ jiðx; tÞqeðx; tÞ, where ji is a proportionality constant (that may depend on the electric field) and qe is the electron
density. These physical considerations suggest restricting the application of Eq. (23) to electrons, and then obtaining the evo-
lution of the rest of species from them.

At a particle level, a superelectron p contributes to the variation of the number of physical particles associated to
the species i at a rate jiðxp

e ; tÞlp
eðtÞ, where the index e has been selected for electrons and i–e. Therefore, instead of

solving Eq. (21), the rate jiðxp
e ; tÞlp

eðtÞ can be assigned to the grid nodes adjacent to the superelectron by using a
CIC assignment,
dðDpMg
i Þ

dcp
e
¼ Dtgþ1=2

e jiðxp
e ; tÞlp

eðtÞW
g
CICðxp

eÞ; ð29Þ

dðDpMgþ1
i Þ

dcp
e

¼ Dtgþ1=2
e jiðxp

e ; tÞlp
eðtÞW

gþ1
CIC ðxp

eÞ; ð30Þ
where DpMg
i denotes the variation of the number of physical particles of the species i induced by the electron p and assigned

to the grid node g. Integration of Eq. (29) gives
DpMg
i ¼ Dtgþ1=2

e jgþ1=2
i ½I1ðc0; c

p
eÞ � I1ðc0; c0Þ�; ð31Þ

DpMgþ1
i ¼ Dtgþ1=2

e jgþ1=2
i ½I2ðc0; c

p
eÞ � I2ðc0; c0Þ�; ð32Þ
where jgþ1=2
i is defined analogously to kgþ1=2

i and functions I0, I1 and I2 are expressed as
I0ðc0; cÞ ¼
1
Cg

e

ðDg
e þ lp

eðc0Þ þ Fg
ec0Þ exp½Cg

eðc� c0Þ� �
c
2
ð2Dg

e þ Fg
ecÞ; ð33Þ

I2ðc0; cÞ ¼
1

ðCg
eÞ

2 ðD
g
e þ lp

eðc0Þ þ Fg
ec0ÞðC

g
ec� 1Þ exp½Cg

eðc� c0Þ� �
c2

6
ð3Dg

e þ 2Fg
ecÞ; ð34Þ

I1ðc0; cÞ ¼ I0ðc0; cÞ � I2ðc0; cÞ: ð35Þ
The total amount of physical particles of the species i left at the node g by electrons are obtained by adding all the
contributions,
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DMg
i ¼

X
p

DpMg
i : ð36Þ
This amount must then be redistributed among all the superparticles of the species i using the CIC assignment scheme.
Since the long time-step particle pushing technique is only applied to electrons, the long time-step will be limited by the

transit time of ions across a computational cell, which is significantly longer than that of electrons. In addition, the long time-
step must be shorter than the charge relaxation time in order to ensure that the electric field is quasi-stationary.

4. Implementation of the long time-step on node-particles

The algorithm proposed in the previous section may not be computationally efficient if it is applied individually to each
superelectron. Of course, part of the coefficients appearing in expressions (23) and (24)–(28) can be precalculated, thus
obtaining a certain optimization. However, the fact that the algorithm requires a number of operations proportional to both
the number of superparticles and the number of cells crossed by the superparticles during its evolution implies a relatively
high computational cost. Therefore, a fundamental change in the algorithm is needed in order to significantly reduce the
computational time.

In this section, the temporal evolution of electrons will be partially described in terms of a set of virtual particles
located on the grid nodes at the beginning of each long time-step. Thus, the technique is based on the Lagrangian
evolution of these virtual particles, which will be denoted as node-particles. In this aspect, the method resembles FLIP
[16], but a stationary grid is here required to evaluate the interaction between species. After the long time-step, the
position and the number of electrons associated to each superelectron will be updated with the information of node-
particles.

In 1D problems, the temporal evolution of a PIC-particles partially overlaps the evolution of other superparticles. This fact
is not useful in normal simulations, where each superparticle advances a fraction of the computational cell during one tem-
poral step. However, when a long time-step particle pushing technique is being applied, the existence of such overlapping
may be exploited to achieve a significant reduction in the computational time. Consider a superelectron, with position xp

e ,
located between grid nodes Xg and Xgþ1. The temporal evolution of the number of electrons associated to the superparticle
from time t1 to time t2 can then be expressed as
Z t2

t1

dlp
e

dt
dt ¼

Z t1�Dtp
e

t1

dlp
e

dt
dt þ

Z t2�Dtp
e

t1�Dtp
e

dlp
e

dt
dt þ

Z t2

t2�Dtp
e

dlp
e

dt
dt; ð37Þ
where Dtp
e is the time required for the superelectron to reach the node Xg ,
Dtp
e ¼

xp
e � Xg

vgþ1=2
e

¼ cp
eDtgþ1=2: ð38Þ
Therefore, the first integral in the right-hand-side of Eq. (37) can be interpreted as the evolution of the superelectron back-
ward in time until it reaches the node Xg . On the contrary, the second integral corresponds to the evolution of the superelec-
tron forward in time during a net time interval of value t2 � t1. Finally, the third integral further advances the evolution of
the superelectron for the time interval Dtp

e , in order to compensate for the first integration backward in time.
Clearly, the second integral will be similar for all superelectrons situated between nodes Xg and Xgþ1 provided that dlp

e=dt
is invariant to time translations,
Z t2�Dtp
e

t1�Dtp
e

dlp
e

dt
dt ¼

Z t2

t1

dlp
e

dt
dt; ð39Þ
since each superelectron is characterized by a different value of Dtp
e . Therefore, the integral could be computed by applying

the long time-step particle pushing technique to a node-particle initially located at Xg . At the beginning of the long time-
step, the node particle would be assigned a total amount of physical electrons given by
Mg
e ¼

X
p

lp
eðt1 � Dtp

eÞ ð40Þ
where the sum is extended to all the superelectrons transported to the node g. After the long time-step, the individual evo-
lution of each superelectron must be recovered from the node-particle.

Application of Eqs. (23) and (31, 32) to node-particles must be analyzed in detail, as it must be shown that they can be
added at PIC-particle level to obtain the correct evolution of node-particles. In the case of source terms that are proportional
to the electron density, these equations become linear in lp

e and, consequently, they can be confidently added at superpar-
ticle level. The evolution of the node-particle will be given by
Mg
eðcp

eÞ ¼ Mg
eðc0Þ exp½Cg

eðcp
e � c0Þ�; ð41Þ
where c0 ¼ 0 at its initial position, the node Xg . In addition, the number of physical particles of the species i (different from
electrons) is incremented on the grid according to (31,32), where
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I0ðc0; cÞ ¼
Mg

eðc0Þ
Cg

e

exp½ðCg
eðc� c0Þ� ð42Þ

I2ðc0; cÞ ¼
Mg

eðc0Þ
ðCg

eÞ
2 ðC

g
ec� 1Þ exp½Cg

eðc� c0Þ�: ð43Þ
This procedure can be iteratively applied to a node-particle crossing several cells. After the long time-step, the number of
physical electrons associated to each superelectron is extracted from the node-particle as
lp
eðt2 � Dtp

eÞ ¼
Mg

eðc
p
eÞ

Mg
eðc0Þ

lp
eðt1 � Dtp

eÞ: ð44Þ
The case of source terms that are not proportional to the electron density is not so obvious. Consider the application of Eq.
(23) and the form of coefficients Ag

e to Fg
e . From the definitions of ng

e and rg
e given by Eqs. (8) and (17), it is
rg
e ¼

DXgSeðXgÞP
p

Wg
CICðx

p
eÞ
: ð45Þ
For PIC-electrons transported to the node g, the denominator in Eq. (45) reduces to the number of superelectrons at the node,
since Wg

CICðXgÞ ¼ 1. Additionally, the value of the denominator remains constant during the evolution of the node-particle,
because Wg

CIC is a constant of motion [16]. Therefore, apparently, coefficients Ag
e , Bg

e , Dg
e and Fg

e are only affected by a constant
(the number of superelectrons per node-particle) and the evolution of each individual superelectron could be extracted from
the node-particle after the long time-step.

However, two important facts were omitted in the previous discussion. Firstly, the sum in the denominator of Eq. (45) is
altered by the transport of superelectrons to the node g. This is not an essential error, as it can be fixed by selecting other
forms of transporting PIC-particles to nodes. One possibility is splitting each superelectron p in two superparticles, with
numbers of physical electrons Wg

CICðx
p
eÞlp

e and Wgþ1
CIC ðx

p
eÞlp

e , and displacing the first of these superparticles to the node g
and the second one to the node g þ 1. This procedure has the advantage of preserving the density of superelectrons on
the grid, although at the cost of duplicating the number of PIC-electrons. Secondly, Eq. (45) involves a coupling between par-
ticles, through the term DXg , which changes during the evolution of node-particles. Consequently, in the case of non-propor-
tional source terms, while it is still possible to calculate the evolution of superelectrons using node-particles, it is no longer
possible to implement a long time-step particle pushing technique.

A review of the computational cycle would be as follows:

1. Interpolate the PIC-particles to the grid to obtain the species densities on the grid nodes,
2. Calculate the characteristic times.
3. If the characteristic times are much longer than the transit time of electrons across a computational cell, apply the long

time-step particle pushing technique:
(a) Advance superelectrons backwards in time to the nearest node using Eq. (23), compute Eqs. (31) and (32), and save

the delay Dtp
e as given by Eq. (38).

(b) Generate node-particles from superelectrons at every grid node, advance node-particles a time interval t2 � t1

using Eq. (41), and compute Eqs. (31) and (32).
(c) Extract superelectrons from the node-particles, advance superelectrons a time interval Dtp

e using Eq. (23), and com-
pute Eqs. (31) and (32).

(d) Advance the superparticles of rest of species (different from electrons) a time interval t2 � t1. During this phase, the
total amount of physical particles generated by superelectrons and node-particles during their evolution and left
on the nodes (Eq. (36)) must be taken into account.

4. Else, if the characteristic times are comparable to the transit time of electrons across a computational cell, integrate
according to a traditional PIC [15].

5. Numerical test: development of Trichel pulses in pure oxygen

The pulsations known as Trichel pulses have been selected to test the suitability of the proposed technique for the sim-
ulation of physical phenomena with different temporal scales. These pulses appear when a sharp electrode is subjected to a
negative DC voltage with value close to the onset of corona discharge.

In this work, Trichel pulses will be modelled using a simplified version of R. Morrow’s one-dimensional model of cor-
ona discharge [6]. The discharge is assumed to develop between a sphere, with radius R ¼ 2 mm, and a grounded plane
at a distance d ¼ 2 cm. The sphere is subjected to a negative high voltage, /0 ¼ �2350 V, and the discharge channel is
modelled as cylinder of radius r ¼ 0:8 mm with uniform properties in each normal section. The equations governing this
problem are
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@qe

@t
þ @

@x
ðVeqeÞ ¼ ða� gÞjVejqe; ð46Þ

@qþ
@t
þ @

@x
ðVþqþÞ ¼ ajVejqe; ð47Þ

@q�
@t
þ @

@x
ðV�q�Þ ¼ gjVejqe; ð48Þ
together with Poisson’s equation
r2/ ¼ �jqej
�qe þ qþ � q�

e0
; ð49Þ
where subscripts e, þ and � refer to electrons, positive ions and negative ions, respectively, and a and g denote the coeffi-
cients of ionization and attachment per unit length. These coefficients, as well as the velocities of electrons and ions, are as-
sumed to be function of the local electric field [27], and their values are taken from [6]. The coordinate x is taken along the
symmetry axis of the discharge channel, with x ¼ 0 on the sphere (the cathode) and x ¼ d at the plane (the anode).

Poisson’s equation is solved as the sum of the Laplacian electric field plus the electric field caused by the space charge
present in the discharge channel. This last electric field is calculated by the method of disks [5]. Boundary conditions for ions
express the fact that there are neither negative ions on the cathode nor positive ions on the anode,
q�ð0; tÞ ¼ 0; ð50Þ
qþðd; tÞ ¼ 0: ð51Þ
However, electrons are emitted from the cathode by secondary emission, as the result of the impact of positive ions,
qeð0; tÞ ¼ C
qþð0; tÞjVþð0; tÞj
jveð0; tÞj

; ð52Þ
where C is the secondary-emission coefficient and its value has been taken from [6]. Finally, the current intensity in the
external circuit is calculated by Sato’s equation [28],
I ¼ pr2jqej
/0

Z d

0
ðqþVþ � q�V� � qeVeÞELdx; ð53Þ
where EL is the Laplacian electric field.

5.1. Results and discussion

The PIC simulation was run on a non-uniform grid with 218 nodes that has a very fine constant resolution in the vicinity
of the cathode and becomes coarser as it approaches the anode. An initial Gaussian distribution of seed electrons was set in
the proximity the cathode, in order to trigger the electrical discharge under the effect of the applied electric field. The devel-
opment of the electrical discharge was simulated for 1 ms. This interval of time is sufficiently long to have a reasonable num-
ber of Trichel pulses in a stable pulsating regime.

The results of the numerical simulation corresponding to the total current intensity are shown in Fig. 1. The amplitude of
the first Trichel pulse is significantly higher than that of subsequent pulses because it starts its development in a region void
of space-charge. On the contrary, the amplitude of pulses within the subsequent train of pulses are all of smaller and similar
magnitude. The elapsed time between the first and the second Trichel pulse is also much longer than between any other two
pulses in the train of pulses. This is a consequence of the high density of charge generated by the first pulse, which shields
the Laplacian electric field and inhibits the development of the second Trichel pulse. Only after the space charge has been
substantially removed the second pulse will appear. In the train of pulses, the charge generated by each pulse is much smal-
ler, and the interval of time between pulses are correspondingly shorter.

Fig. 2 depicts the evolution of the relevant characteristic times during the development of six consecutive Trichel pulses.
Clearly, the shortest time is the one associated with the transit time of electrons across a computational cell,
se ¼ DXgþ1=2=jVej. The characteristic temporal scale of ions, si ¼ DXgþ1=2=jVþj � DXgþ1=2=jV�j, is two orders of magnitude
higher than that of electrons, due to their lower mobilities. The source–sink terms of particle densities introduce two addi-
tional characteristic times, associated to the processes of ionization, sa ¼ ðajVejÞ�1, and electron attachment, sg ¼ ðgjVejÞ�1.
Finally, the longest temporal scale is the one corresponding to the charge relaxation time,
sr ¼
�

jqejðKeqe þ Kþqþ þ K�q�Þ
; ð54Þ
where K denotes the mobility of charged carriers. This last scale represents the time interval required for a significative var-
iation of the electric field.

In conventional PIC simulations, the transit time of electrons across the computational cells (the shortest temporal scale)
constitutes an upper limit for the computational time-step. Since se � 10�11 s, the numerical simulation of the discharge
development during 1 ms would therefore require more than 108 computational cycles. However, in the present PIC
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Fig. 1. Total current intensity versus time corresponding to train of Trichel pulses for /0 ¼ �2350 V.
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technique, the computational time-step is only limited by the charge relaxation time and the transit time of ions, which is, as
previously indicated, more than two order of magnitude longer than the transit time of electrons. Since the transit time of
ions is also shorter than the charge relaxation time, the electric field will be quasi-stationary during the computational time-
step. Therefore, the position of superparticles and the number of physical particles associated to them can be integrated by
applying the procedure explained in Sections 3 and 4.

5.2. Comparison with a conventional PIC method

In this section, the results obtained by using the proposed PIC technique will be compared with those obtained by means
of a standard PIC method. However, the numerical simulation will be restricted to a single pulse ð� 10 lsÞ, since the
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simulation of the complete train of Trichel pulses using a conventional PIC technique would require a huge computational
time. Therefore, the spatial distribution of species densities predicted by the new PIC technique, at t ¼ 440 ls, has been ta-
ken as the initial condition to start the numerical simulation with the standard PIC method.

The total current intensity obtained from the two techniques is first compared in Fig. 3. In Fig. 4, the separated contribu-
tions of electrons (left), positive ions (center) and negative ions (right) to the total current intensity is also shown. Clearly, the
agreement between the two techniques is remarkable.

A more stringent test would be to compare the spatial distribution of electrons and ions at a certain instant of time. This
comparison is performed in Fig. 5, where the spatial distribution of species are depicted at the times corresponding to the
peak value of the total current intensity (left) and at the end of the Trichel pulse (right). Again, the agreement between the
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Fig. 3. Total current intensity versus time for a single Trichel pulse according to the proposed PIC technique and a conventional PIC method.
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two techniques is excellent. The oscillations exhibited by the positive ion density are originated by the raise and fall of elec-
tron density with each Trichel pulse. The trigger of a Trichel pulse entails an augmentation of the electron density every-
where in the discharge gap (cf. Fig. 5-left and Fig. 5-right). Additionally, in the vicinity of the anode, the electric field
intensity is sufficient to ionize the background oxygen, thus generating positive ions. These ions will drift towards the anode
impelled by the electric field, but the migration time of ions is roughly 1/10th of the period of Trichel pulses. Therefore, about
ten peaks of positive ions density will be always present in the space between electrodes.

Finally, the spatial distribution of the electric field, according to the two numerical techniques, are compared in Fig. 6 at
the same two instants of time previously considered. In the proximity of the anode, the sharp drop of electric field produces a
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Fig. 6. Spatial distribution of electric field at the time of maximum of current intensity and at the end of the Trichel pulse according to the proposed PIC
technique and a conventional PIC method.
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large gradient of velocity, which favors the accumulation superelectrons at the minimum of electric field. On the other hand,
since positive ions are moving in a growing velocity field, they are separated one from the another. Therefore, the superpar-
ticle density of positive ions becomes very low and may even fall under one superparticle per cell. To avoid these problems,
superparticles are coalesced and split conveniently to maintain a reasonable density of superparticles everywhere in inte-
gration domain. Very sophisticated techniques have been developed for splitting and coalescing particles [29–31]. In this
work, a simplified version of procedure proposed by Lapenta and Brackbill [29] has been applied to maintain the fluctuations
of particles densities to a reasonable degree.

The advantage of the proposed PIC technique over the standard PIC method resides in its superior computational effi-
ciency. This fact can be readily appreciated in Fig. 7, where the elapsed CPU time is depicted as a function of the simulation
time. The elapsed CPU time increases almost linearly with the simulation time but, according to these results, the PIC imple-
mentation proposed in this work is about 70 times faster than the conventional PIC technique. The CPU time represented in
Fig. 7 only corresponds to the time spent in the routines that integrate the particle positions and the number of physical par-
ticles associated to the computational particles.

6. Conclusions

A fluid PIC method has been proposed for the integration of continuity equations using a long time-step particle pushing
procedure. In gas discharges, electrons are usually responsible for the generation of the rest species. Therefore, the use of the
long time-step can be limited to superelectrons, and then deduce from them the evolution of the other species. The compu-
tational time can be significantly reduced with the introduction of node-particles that allow the implementation of the long
time-step particle pushing technique at grid level. In the proposed method, the time-step is only limited by the charge relax-
ation time and the transit time of ions across the computational cells, which are much longer that transit time of electrons.
The validity of the method has been checked with the simulation of a train of Trichel pulses lasting 1 ms. The results obtained
with the proposed method are in excellent agreement with the predictions of a conventional PIC technique, but the new
method is nearly 70 times faster than the standard PIC method.
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